
Experiences tuning SYCL libraries
John Lawson

P3HPC Forum – Sept 2020



© 2020 Codeplay Software Ltd.2

• Parameterized kernels allow performance to be tuned for a 
range of hardware
• Automatically tuning these parameters reduces developer 

effort and increases effectiveness
• Auto-tuners work out the best set of kernel parameters for a 

given set of inputs...
• ... but general purpose libraries want to provide performance 

on all possible input sizes

Auto-tuning compute kernels



© 2020 Codeplay Software Ltd.3

• OpenCL kernels are provided as source code, with 
parameters set using the preprocessor
• Cost of using different kernel parameters is only JIT 

compilation time

Auto-tuning OpenCL



© 2020 Codeplay Software Ltd.4

1. Use auto-tuning to find kernel parameters for a 
representative range of input sizes

2. Provide a system to choose optimal kernel parameters for 
unseen input sizes

Required steps



© 2020 Codeplay Software Ltd.5

• CLBlast
• Provides a database of devices and tuning scripts
• Uses a single best configuration for each device

• clBlas
• Provides a number of different kernels generated for library targets

• ARM Compute Library
• Hardcodes kernels and kernel parameters for the library targets

Existing implementations



© 2020 Codeplay Software Ltd.6

• SYCL is a single-source 
heterogeneous parallel 
programming model 
maintained by the Khronos
Group
• Allows developers to write 

compute kernels in C++

SYCL



© 2020 Codeplay Software Ltd.7

• SYCL kernels compiled to bitcode (SPIR, SPIR-V, PTX, GCN,...)
• Each tuned kernel a binary blob embedded in the library
•More kernels = better performance, but also larger binaries

Providing kernels in a SYCL library



© 2020 Codeplay Software Ltd.8

1. Use auto-tuning to find kernel parameters for 
representative input sizes

2. Choose a subset of kernel parameters to deploy in library
3. Create a system to choose optimal kernel parameters for 

unseen inputs

SYCL required steps



© 2020 Codeplay Software Ltd.9

template <typename T, typename Index, bool TransposeLHS, bool TransposeRHS,
int RowTile, int AccTile, int ColTile>

struct MatmulKernel;

Matrix multiply case study

• 640 possible kernel configurations
• Tile sizes 1, 2, 4 and 8
• Work-group sizes of 1, 8, 16, 32 and 128

• Recorded average execution time and flops for 300 matrix 
sizes on AMD R9 Nano GPU and Intel i7-6700K CPU.



© 2020 Codeplay Software Ltd.10

Frequency that one kernel is best

GPU:

CPU:



© 2020 Codeplay Software Ltd.11

Selecting a subset of kernels (GPU)



© 2020 Codeplay Software Ltd.12

Selecting a subset of kernels (CPU)



© 2020 Codeplay Software Ltd.13

Selecting kernels at runtime

GPU:

CPU:



© 2020 Codeplay Software Ltd.14

Performance on machine learning model

Time for one image inference of a SYCL-DNN implementation 
of VGG16 with different matrix multiplication libraries.



© 2020 Codeplay Software Ltd.15

• Unsupervised machine learning techniques provide easy and 
effective methods to select a subset of kernels to deploy in a 
SYCL library.
• A decision tree gives reasonable performance when selecting 

which of these kernels to use at runtime.
• This system extracts portable performance from 

parameterized SYCL kernels, beating other tuned libraries.

Conclusions



@codeplaysoft codeplay.cominfo@codeplay.com


